Monthly Archives: Januar 2021

Videosprechstunde mit Ihrem Narkosearzt

Lange Wartezeiten und weite Anfahrtswege für einen kurzen Vorgesprächstermin beim Anästhesisten? Das muss nicht sein! Ab sofort ist im Helios Klinikum Berlin-Buch das präoperative Aufklärungsgespräch per Videosprechstunde möglich. Unsere Patientinnen und Patienten können diesen Termin für eine Vielzahl von Eingriffen ganz bequem von Zuhause aus wahrnehmen.

  • Mit der Videosprechstunde sicher und bequem von zu Hause aus den Arzt konsultieren
  • Termine buchbar über das Helios Patientenportal

Ab sofort ist im Helios Klinikum Berlin-Buch das präoperative Aufklärungsgespräch per Videosprechstunde möglich. Foto: Helios-Klinikum Buch

Bevor man sich einem Eingriff unterzieht, bei welchem ein Narkoseverfahren zur Anwendung kommen soll, erfolgt ein präoperatives Aufklärungsgespräch mit dem Anästhesisten. Mit der Prämedikationsvisite wird die Basis für einen erfolgreichen und komplikationslosen Anästhesieablauf gelegt. Ab sofort können unsere Patientinnen und Patienten diese Narkosesprechstunde neben dem klassischen Gespräch im Klinikum nun auch online wahrnehmen. In einer Videosprechstunde erfolgt ein persönliches Gespräch von Angesicht zu Angesicht mit dem Anästhesisten in dem gemeinsam der Prämedikationsbogen durchgegangen wird. Zudem informiert der Mediziner über wichtige Verhaltensregeln vor der Narkose, den Ablauf am Operationstag und mögliche Risiken der Narkose.

Geschäftsführer Daniel Amrein
Alle Rechte: Helios-Klinikum Buch

Aktuell gibt es eine hohe Anzahl an aufgeschobenen Eingriffen und zugleich den starken Patientenwunsch, Kontakte, wenn möglich zu minimieren. Wir gehen nicht nur den nächsten großen Schritt, die Gesundheitsversorgung in die Wohnzimmer unserer Patientinnen und Patienten zu bringen und damit ein, in sehr vielen Kliniken unangenehmes Thema vor jedem Eingriff mit Narkose zu lösen, sondern erweitern auch unser Hygienekonzept zu einem wichtigen Zeitpunkt im Kampf gegen COVID-19. Das Pilotprojekt der digitalen Anästhesiesprechstunde ist für uns in Zukunft, neben dem persönlichen Austausch ein fester Bestandteil von Arztgesprächen in jedem unserer Fachbereiche“, betont Daniel Amrein, Geschäftsführer im Helios Klinikum Berlin-Buch.

Und weiter: „Natürlich wollen wir im Nachgang auch anderen Kliniken die Möglichkeit geben, von unseren Erfahrungen zu lernen und das Projekt der digitalen Anästhesiesprechstunde auch bei sich zu etablieren. Wir testen beispielsweise in den nächsten Wochen direkt in den Helios Kliniken Bad Saarow und Hettstedt.“ 

Die Videosprechstunde bieten wir schon länger an, sowohl stationär als auch ambulant. Das Angebot der Anästhesie-Videosprechstunde ist eine logische Weiterentwicklung. Die Patientinnen und Patienten vermeiden unnötige Wege und können dennoch im persönlichen Austausch mit ihrem Arzt oder ihrer Ärztin bleiben. Da deutschlandweit in vielen Studien ein Trend sichtbar wird, Behandlungen seitens der Patienten aufzuschieben, ist es besonders wichtig, dass Patient und Arzt weiterhin zusammenfinden“, ergänzt Prof. Dr. med. Henning T. Baberg, Ärztlicher Direktor im Helios Klinikum Berlin-Buch.

Video statt Wartezimmer

Mirjam Stolzenburg, Oberärztin der Anästhesie, perioperative Medizin und Schmerztherapie, leitet die Organisation der Anästhesievideosprechstunde. Sie betont: „Es ist eine weitere Option für unsere Patienten, die diese gern annehmen. Viele empfinden die Videosprechstunden in der gewohnten Umgebung angenehmer und sind weniger gestresst. Mit einem Klick können Patienten schnell und einfach bei uns ihren persönlichen Videosprechstunden-Termin online buchen.“

Das bestätigt auch Heike R. (56) aus Berlin-Pankow, die ihr Anästhesievorgespräch in Vorbereitung auf ihre Knie-OP, per Videochat in Anspruch genommen hat: „Durch die Videosprechstunde habe ich eine längere Aufenthaltsdauer im Krankenhaus und viele unnötige Kontakte gespart. Ich konnte das ganz in Ruhe von zu Hause aus absolvieren. Man sollte sich nicht davor versperren, diese „neuen“ Wege der Arztkonsultation zu gehen. Wenn man sich einmal darauf eingelassen hat, klappt das Ganze sehr gut und bringt sehr viele Vorteile mit sich.“

Auch weniger technikaffine Patienten brauchen keine Angst vor dem digitalen Arztgespräch zu haben: „Unsere älteren Patienten gehen meist mit einem Angehörigen zusammen in die Videosprechstunde, das funktioniert dann auch sehr gut in der Dreierrunde“, sagt Frau Stolzenburg.

Die Videosprechstunde läuft über eine sichere Software, die für Patienten einfach zu handhaben ist. Der Patient benötigt nur ein Handy, Tablet oder Computer mit Kamera und Verbindung zum Internet. Eine Videoaufzeichnung der Gespräche ist aus Datenschutzgründen nicht erlaubt. Was für den Mediziner von Relevanz ist, wird nach wie vor klassisch in der Patientenakte vermerkt.

Quelle: PM des Helios-Klinikums Buch vom 26. 01. 2021

Kontaktlos zum Arzt mit der Videosprechstunde

Helios-Klinikum Berlin-Buch

Facebook/Helios-Klinikum Berlin-Buch

Der Herr der Ringe – Anton Henssen

Gemeinsame Pressemitteilung von MDC, Charité und BIH anlässlich des Weltkrebstages am 4. Februar

Für die Erforschung ringförmiger DNA und deren Bedeutung bei der Entstehung kindlicher Neuroblastome ist Anton Henssen vom ECRC mit dem Preis der Kind-Philipp-Stiftung für pädiatrisch-onkologische Forschung ausgezeichnet worden. Entscheidend dafür war eine Publikation im Fachblatt „Nature Genetics“.

Krebs ist eigentlich eine typische Alterserkrankung. Im Laufe des Lebens sammeln sich in den Zellen des Körpers Veränderungen im Erbgut an, die zunehmend schlechter repariert werden. Und irgendwann ist der Punkt erreicht, an dem eine Zelle aufgrund der Mutationen anfängt, unkontrolliert zu wachsen und sich zu vermehren.

Anton G. Henssen
© Linda Ambrosius

Warum auch schon Kinder an Krebs erkranken, ist eine Frage, die PD Dr. Anton Henssen seit Längerem beschäftigt. Der 35-Jährige ist Wissenschaftler am Experimental and Clinical Research Center (ECRC), einer gemeinsamen Einrichtung der Charité – Universitätsmedizin Berlin und des Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC). Seit 2019 leitet er auf dem Campus Berlin-Buch die Emmy-Noether-Forschungsgruppe „Genomische Instabilität bei kindlichen Tumoren“.

Interesse an zirkulärer DNA ist neu

Erst im vergangenen September erhielt Henssen für seine Forschung einen der begehrten Starting Grants des European Research Council (ERC). Für das Projekt „CancerCirculome“ stellt der ERC Henssen in den kommenden fünf Jahren rund 1,5 Millionen Euro zur Verfügung. „Die Bedeutung zirkulärer DNA bei der Entstehung von Krebs rückt immer mehr in das Zentrum des wissenschaftlichen Interesses“, sagt Henssen. Das sei, als er begonnen habe, sich für das Thema zu begeistern, noch ganz anders gewesen.

„Auch deshalb freue ich mich jetzt sehr über den Preis der Kind-Philipp-Stiftung für pädiatrisch-onkologische Forschung“, sagt Henssen, der neben seiner Arbeit als Wissenschaftler auch als Kinderarzt an der Klinik für Pädiatrie mit Schwerpunkt Onkologie und Hämatologie der Charité praktiziert. „Die Auszeichnung ist hierzulande eine der bedeutendsten auf dem Gebiet der Kinderonkologie.“

Winzige Ringe bringen Erbgut durcheinander

Leider werde die Preisverleihung aufgrund der Corona-Pandemie erst irgendwann im Laufe des Jahres stattfinden, sagt Henssen. Das Preisgeld von 10.000 Euro habe ihm die Stiftung aber bereits überwiesen. „Wenn die aktuelle Krise vorüber ist, werde ich mit meiner Arbeitsgruppe, ohne die ich den Preis niemals bekommen hätte, ganz groß feiern gehen“, sagt Henssen, der auch am Clinician Scientist Program des Berlin Institute of Health (BIH) und der Charité teilnimmt und darüber hinaus wissenschaftliches Mitglied im Deutschen Konsortium für Translationale Krebsforschung (DKTK) am Standort Berlin ist.

Mit dem Kind-Philipp-Preis wird einmal im Jahr die beste Arbeit deutschsprachiger Autor*innen zur Erforschung von Krebs bei Kindern ausgezeichnet. Prämiert hat die Stiftung dieses Mal eine Studie, die 2020 im Fachblatt „Nature Genetics“ erschienen ist. Zusammen mit Dr. Richard Koche vom Memorial Sloan Kettering Cancer Center in New York, Prof. Dr. Angelika Eggert, Direktorin der Klinik für Pädiatrie mit Schwerpunkt Onkologie und Hämatologie der Charité, sowie 35 weiteren Forscher*innen hat Henssen in der Publikation gezeigt, dass kleine DNA-Ringe in Nervenzellen von Kindern das Erbgut so durcheinanderbringen können, dass sich ein Neuroblastom entwickelt.

Wachstum des Neuroblastoms beschleunigt

Das Team hatte für die Studie Gewebeproben von 93 Kindern mit einem Neuroblastom untersucht. Dabei stellte die Gruppe fest, dass zirkuläre DNA in den Tumorzellen deutlich häufiger und in größerer Komplexität zu finden ist als bis dahin angenommen. Zusätzlich konnten die Wissenschaftler*innen anhand ihrer Daten ableiten, wie sich bestimmte Abschnitte der Erbinformation aus einem Chromosom herauslösen, Ringe bilden und sich anschließend an anderer Stelle des Chromosoms wieder einbauen. „Da dabei die ursprüngliche Abfolge der Erbinformation durcheinandergebracht wird, können die betroffenen Zellen leicht entarten“, erklärt Henssen.

Gemeinsam mit seinem Team zeigte der Forscher zudem, dass bestimmte DNA-Ringe das Wachstum von Neuroblastomen beschleunigen. Deren Nachweis könnte es künftig erleichtern, den Krankheitsverlauf der Kinder besser einzuschätzen. Henssens nächstes Ziel ist es nun, das zirkuläre Erbgut genau zu sequenzieren und jene Faktoren zu identifizieren, die das Entstehen und die Vermehrung der Ringe überhaupt erst ermöglichen.

So hofft der Forscher und Arzt, seinen kleinen Patient*innen an der Charité in Zukunft noch besser als bisher helfen zu können. „Wenn wir Marker für eine bessere Diagnose und Prognose entwickeln“, sagt Henssen, „werden wir in der Lage sein, den krebskranken Kindern und ihren Eltern eine sehr viel individuellere und damit vermutlich auch effektivere Therapie anzubieten.“

Text: Anke Brodmerkel

Quelle: PM 26. 01. 20201

Porträt Anton Henssen

AG Henssen

Berlin Institute of Health

Das Informationsportal zu Krebs- und Bluterkrankungen bei Kindern und Jugendlichen

Marktschwärmerei in Buch, Wiltbergstrasse

Willkommen in unserer Schwärmerei! Hier findest Du hochwertige Lebensmittel aus unserer Region: Gemüse, Obst, Fleisch, Eier, Käse, Milchprodukte, Brot, Honig und Feinkost. Bei Marktschwärmer bekommst Du vor allem Produkte, die Du nicht im Supermarkt findest – und kannst außerdem die Menschen kennenlernen, die sie herstellen. Transparenter und fairer kann man nicht regional einkaufen! Komm vorbei, lerne die Erzeuger kennen und nutze die Gelegenheit, um besser zu essen und dabei die Landwirtschaft in unserer Region zu unterstützen.

Wir haben bereits eine Schwärmerei auf unserem Bauernhof in Zehlendorf. Die Erzeuger sind fast alle auch in Buch mit dabei.
Wir sind ständig auf der Ausschau nach weiteren Erzeugern aus der Region. Leider sind noch zu wenige Erzeuger aus dem direkten Umfeld ein Teil dieser Bewegung, daher müssen wir auch auf das etwas weiter entfernte Regionen wie z.B. die Altmark zurückgreifen. Also, wenn Ihr noch Erzeuger kennt die diese Bewegung noch nicht kennen, sprecht sie bitte an und erzählt ihnen davon.

Bei Fragen und Anregungen sprecht uns bitte an.

Liebe Grüße, Euer Markschwärmerteam- Buch
Mandy und Stefan Gürgen

  • Donnerstag von 17:30 bis 19:00 Uhr
Wiltbergstr.43
E-Mail: Kontakt

Antworten auf Fragen zu Corona-Impfstoffen

Die neuen Impfstoffe gegen SARS-CoV-2

Bereits ein Jahr nach der Entdeckung des neuen Coronavirus SARS-CoV-2 sind erste Impfstoffe in Europa zugelassen. Daran knüpft sich viel Hoffnung, aber auch Skepsis. Um eine sachliche Debatte zu unterstützen, beantworten unsere Expert*innen aus Immunologie und RNA-Biologie häufige Fragen.

Wie funktioniert ein Impfstoff?

Eine Impfung bereitet den Körper auf eine mögliche Infektion vor. Und zwar so, dass unser Immunsystem den Erreger abwehren kann und man nicht krank wird. Dazu wird meist ein Impfstoff gespritzt. Seine Bestandteile haben Merkmale des Virus, können aber die Krankheit nicht auslösen. Seit dem 19. Jahrhundert sind verschiedene Impfstoffe entwickelt worden, die sehr erfolgreich sind; schwere bis tödliche Viruserkrankungen wie die Masern konnten so in weiten Teilen Amerikas und Europas fast ausgerottet werden.

Copyright: NIAID/NIH

Impfstoff ist nicht gleich Impfstoff. Manchmal wird nur ein Teil des Virus genutzt, manchmal das vollständige, aber beispielsweise durch Hitze abgetötete Virus, manchmal eine harmlose Virusvariante, die für den Körper ähnlich genug aussieht. Diese „traditionellen“ Impfstoffe sind weltweit auch gegen das Coronavirus in der Entwicklung. Doch ihre Produktion ist oft sehr langwierig.

Während der SARS-CoV-2-Pandemie konnten Impfstoffe, die auf neuen Plattform-Technologien beruhen, am schnellsten auf das neue Virus angepasst und entwickelt werden. Dazu gehören die RNA-Impfstoffe der Firmen BioNTech/Pfizer bzw. Moderna oder der Adenovirus-Impfstoff der Universität Oxford und der Firma AstraZeneca. Der RNA-Impfstoff von BioNTech/Pfizer wird seit Ende Dezember in Deutschland angewandt, der Moderna-Impfstoff ist seit dem 6. Januar 2021 in Europa zugelassen. Ein weiterer RNA-Impfstoff der Firma CureVac wird noch klinisch geprüft.

Wie funktionieren RNA-Impfstoffe?

Der RNA-Impfstoff besteht aus zwei Teilen: ein RNA-Molekül sowie „Verpackungsmaterial“. Die Verpackung ist nötig, damit dieses RNA-Molekül in die Zellen des Körpers hineinkommen kann.

RNA-Moleküle sind als kurzzeitiger Speicher unserer Erbinformation wichtiger Bestandteil aller menschlicher Körperzellen. Wenn man sich unser Erbgut, das aus DNA-Molekülen im Zellkern besteht, als ein Kochbuch vorstellt, dann sind RNA-Moleküle daraus abgeschriebene Notizzettel, die im Zellplasma genutzt und wieder entsorgt werden.

Das Erbgut des Corona-Virus besteht aus RNA, die neuen Impfstoffe nutzen einen Ausschnitt daraus. Statt dem kompletten Gänge-Menü (= das Erbgut des ganzen Virus) umfasst der Notizzettel nur das Rezept für die Vorspeise: die kleinen Stacheln des Virus.

Wenn unsere Körperzellen den Impfstoff aufnehmen, „kochen“ sie damit im Zellplasma ein Protein (Eiweiß), das normalerweise auf der Oberfläche der Viren sitzt und präsentieren es anschließend auf ihrer Hülle. Das Immunsystem kann nun Antikörper und andere Immunzellen gegen die Stacheln bilden. Sobald nach einer Ansteckung das richtige Virus in den Körper gelangt, wird er von den Antikörpern erkannt und bekämpft. So kann es viel weniger Schaden anrichten.

Das RNA-Molekül im Impfstoff ist so konstruiert, dass es möglichst oft abgelesen werden kann. Es ist quasi ein sehr robuster Notizzettel. Das macht die Impfung so effizient. Dank jahrzehntelanger Grundlagenforschung – lange vor Corona – ist es gelungen, diese RNA als zelleigene RNA zu tarnen, sodass sie nicht sofort als „von außen kommend“ erkannt wird. Perfekt ist die Tarnung aber nicht, und die Reaktion darauf könnte ein Grund für Nebenwirkungen wie Fieber und Schmerzen sein. Der Notizzettel wird abgelesen, das Format ist aber irgendwie etwas unpassend. Nach ein bis zwei Tagen werden die RNA-Moleküle in den Zellen abgebaut.

Da die RNA alleine kaum in unsere Zellen kommen kann – sie ist zu groß und elektrisch geladen –, wird sie in seifenähnliche Bläschen eingepackt. Diese Substanzen (Lipide und Polyethylenglykol) wurden in den vergangenen zehn Jahren beständig verfeinert, damit sie möglichst wenig Schaden im Körper erzeugen. Sie gelten mittlerweile als sicher genug für die breite Anwendung.

Wie weist man nach, ob ein Impfstoff wirklich tut, was er verspricht?

So verheerend die Pandemie ist, weil sich so viele Menschen anstecken, so günstig ist das für klinische Studien mit einem Impfstoff. Um die Wirksamkeit zu testen, erhielten zum Beispiel im Falle von BioNTech/ Pfizer ungefähr 18.000 Menschen den Impfstoff, und 18.000 Menschen bekamen nur eine Spritze mit Salzwasser (Kontrollgruppe). Im Laufe von einigen Monaten gab es in der Kontrollgruppe fast 200 zufällige Ansteckungen, in der geimpften Gruppe nur ungefähr ein Dutzend. Diese ungleiche Verteilung zeigt, dass der Impfstoff sehr wirksam ist.

Zusätzlich haben die Forscher*innen den Schutz in Tierversuchen mit Rhesusaffen nachgewiesen. Rhesusaffen sind natürlicherweise empfänglich für eine Infektion mit SARS-CoV-2 und entwickeln auch Krankheitssymptome wie eine Lungenentzündung. Sie eignen sich also als Tiermodell für die COVID-19-Erkrankung. Nach der Gabe des experimentellen Impfstoffs wurden die Tiere dem Virus ausgesetzt – sie waren jedoch geschützt, eine Infektion war nicht nachweisbar.

Nebenwirkungen

Manche Impfungen haben fast keine Nebenwirkungen, andere sind unangenehmer. Wo ist der neue Impfstoff anzusiedeln? Fühlt man sich nach der Impfung krank?

Nebenwirkungen gibt es oft bei Impfungen, und sie können auf zwei verschiedene Arten entstehen. Zum einen ist eine Impfung eine „kleine Infektion“. So reagiert der Körper ähnlich wie man es bei einer Virusinfektion auch erleben kann: etwa mit Fieber, Kopfschmerzen oder Müdigkeit. Zum anderen gibt es auch eine Reaktion an der Einstichstelle sowie auf Teile des Impfstoffs.

Bei der Untersuchung der Wirksamkeit des BioNTech/ Pfizer-Impfstoffes wurden solche Nebenwirkungen im Detail abgefragt. In der geimpften Gruppe hatten ungefähr 80 Prozent Schmerzen bei der Einstichstelle (davon ungefähr zwei Drittel „mild“, und ein Drittel „mäßig; wenige „stark“), in der Kontrollgruppe waren es 14 Prozent. Generell waren die Nebenwirkungen nach der zweiten Dosis stärker als nach der ersten. Bei den Geimpften gaben dann 59 Prozent Müdigkeit an (Kontrollgruppe 23 Prozent), 52 Prozent Kopfschmerzen (Kontrollgruppe 24 Prozent) und 37 Prozent Muskelschmerzen (Kontrollgruppe 8 Prozent). Jeweils gut die Hälfte davon empfand die Nebenwirkungen als mäßig, einige stark. Fieber über 38 Grad hatten nach der zweiten Dosis 16 Prozent der Geimpften, wenige auch über 39 Grad. Geschwollene Lymphknoten wurden bei drei von 1000 Geimpften festgestellt; andere schwerere Nebenwirkungen sind laut der Studie zu Phase 3 der Prüfung nicht aufgetreten.

Insgesamt müssen also viele Geimpfte für ein bis drei Tage mit spürbaren, teils auch unangenehmen Nebenwirkungen rechnen. Sie sind aber ein gutes Zeichen: Das Immunsystem macht, was es soll. Seltenere oder langfristig auftretende Folgen sind nicht bekannt. Die Teilnehmer*innen der Impfstoffstudien werden jedoch weiter beobachtet.

Das „Verpackungsmaterial“ kann weitere unbeabsichtigte Nebenwirkungen erzeugen. Besonders genau verfolgt wird das bei Polyethylenglykol (PEG). Es gibt Menschen, die Antikörper gegen diese Substanz haben. Bei der Impfung kann das zu einer allergischen Reaktion führen. Es wird daher erwogen, Menschen mit vielen Allergien erst später zu impfen. Geimpfte sollen außerdem 15-30 Minuten im jeweiligen Impfzentrum bleiben. Denn dort werden beispielsweise Adrenalinspritzen bereitgehalten, um einen allergischen Schock zu behandeln. Er würde 5-30 Minuten nach der Impfung auftreten. Das wurde bisher bei 1 von 100.000 Geimpften dokumentiert.

Beim zweiten Impftermin wird gefragt, wie die Person die erste Dosis vertragen hat. Geimpfte können sich bei weiteren Komplikationen beim Hausarzt / der Hausärztin melden. Hausärzt*innen und Gesundheitsämter geben Information über ungewöhnliche körperliche Reaktionen an das Paul-Ehrlich-Institut (PEI) weiter. Dort werden sie systematisch in einer Datenbank erfasst und bewertet, ob ein Zusammenhang mit der Impfung möglich ist. Das PEI informiert zudem die europäische Zulassungsbehörde EMA, die die Meldungen in einer zentralen Datenbank sammelt. Falls es bei Gesundheitsbeschwerden einen statistisch signifikanten Zusammenhang zur Impfung gibt, würden diese Nebenwirkungen also schnell registriert.

Welche Erfahrungen gibt es mit Lipidnanopartikeln? Wie werden sie abgebaut?

Die Lipidnanopartikel (LNP) ähneln den Liposomen (Fettkörperchen), die als Träger für Arzneistoffe seit über 20 Jahren in der Medizin eingesetzt werden. In einem weiteren zugelassenen Arzneimittel (Onpattro) sind therapeutische RNA-Moleküle in sehr ähnlichen Fettbläschen verpackt. Bei diesen Arzneimitteln bekommen die Patient*innen im Vergleich zur Impfung aber deutlich höhere Lipidmengen als Infusion.

Impfstoffe mit ähnlichem Aufbau gab es auch schon: virosomale Impfstoffe wie Epaxal gegen Hepatitis A oder Inflexal gegen die Grippe. Virosomen sind ebenfalls Phospholipid-Bläschen, die auf ihrer Oberfläche Hüllproteine der Viren tragen. Mit diesen Impfstoffen gibt es in der Medizin seit vielen Jahre Erfahrung, das Sicherheitsprofil ist gut.

Die Struktur der Lipidnanopartikel bilden – wie in den biologischen Membranen unseres Körpers auch – Phospholipide mit darin eingelagertem Cholesterin. Die verschiedenen LNP enthalten darüber hinaus weitere Lipidbestandteile, die spezielle Eigenschaften vermitteln. Da alle Lipide mit körpereigenen Lipiden identisch bzw. ihnen sehr ähnlich sind, gelten diese Nanopartikel als „biologisch abbaubar“. Es ist davon auszugehen, dass sie im Körper ähnlich wie Nahrungslipide enzymatisch abgebaut werden und weitgehend in den körpereigenen Fettstoffwechsel eingehen. Eine mögliche Toxizität jeder dieser neuartigen Impfstoffzubereitungen wurde vor der Zulassung in präklinischen Tests geprüft.

Enthält der Impfstoff zusätzliche Wirkverstärker?

In dem BioNTech/Pfizer-Impfstoff sind keine Adjuvantien enthalten, ebenso wenig ein Konservierungsstoff.

Als Hilfsstoffe sind aufgeführt:

  • ALC-0315 = (4-Hydroxybutyl)azandiyl)bis (Hexan-6,1-diyl)bis(2-hexyldecanoat)
  • ALC-0159 = 2-[(Polyethylenglykol)-2000]-N,N-ditetradecylacetamid
  • 2-Distearoyl-sn-glycero-3 phosphocholin
  • Cholesterol
  • Kaliumchlorid
  • Kaliumdihydrogenphosphat
  • Natriumchlorid
  • Dinatriumhydrogenphosphat-Dihydrat
  • Saccharose
  • Wasser für Injektionen

Die Lipid-Nanopartikel des BioNTech/Pfizer-Impfstoffes, in die die Boten-RNA eingebettet ist, enthalten also unter anderem Polyethylenglykol (PEG), damit sie besser löslich sind. PEG wird auch in vielen Medikamenten und Kosmetika verwendet. In seltenen Fällen reagieren Menschen darauf allergisch. PEG gilt daher zurzeit als Hauptverdächtiger für mögliche allergische Reaktion auf COVID-19-Impfstoffe.

Kann die Boten-RNA unser Genom verändern?

Im Durchschnitt enthält jede Körperzelle im Zellplasma etwa 360.000 Boten-RNA-Moleküle. Und bei jeder Virusinfektion, also auch bei jeder leichten Erkältung, gelangt fremde RNA in unsere Zellen. Sie dringt aber nicht einmal in den Zellkern, wo unser Erbgut lagert, vor.

Eine Integration von RNA in DNA ist unter anderem aufgrund der unterschiedlichen chemischen Struktur äußerst unwahrscheinlich. Die beiden Biomoleküle passen nicht zusammen und können keine Ketten bilden. Die wichtigsten Abweichungen: DNA besteht aus einem Doppelstrang, RNA aus einem Einzelstrang. Beide verwenden zudem unterschiedliche Zuckermoleküle als Gerüst. RNA und Dann unterscheiden sich auch in einer der jeweils vier organischen Basen, welche die „Sprossen“ der wie Leitern aussehenden Biomoleküle bilden.

Kann man nach so kurzer Zeit schon sagen, ob ein Impfstoff sicher genug ist, um ihn weiten Teilen der Bevölkerung – und zuerst Risikogruppen – zu spritzen? Noch dazu, wenn es sich um eine völlig neue Technik handelt?

Absolute Sicherheit gibt es nicht, auch nicht bei so einem neuartigen Impfstoff. Es gilt aber abzuwägen, was das eigene Leben deutlich mehr gefährdet: das Risiko der Corona-Infektion mit einem möglicherweise schweren, mit Langzeitfolgen verbundenen Verlauf oder die bislang beschriebenen milden und nur äußerst selten stärker auftretenden Nebenwirkungen der Impfung. Gerade alte und hochaltrige Menschen laufen bei einer Infektion mit SARS-CoV-2 Gefahr, daran zu versterben.

Ein gutes Beispiel für eine solche Abwägung ist die Masernimpfung: Nach einer Infektion mit dem Masernvirus erkranken 98 Prozent der Ungeimpften tatsächlich an Masern. Bei einem von 1.000 bis 2.000 Erkrankten entwickelt sich im Krankheitsverlauf eine Gehirnentzündung (Enzephalitis). Bei einer Masern-Impfung liegt das Risiko, an Enzephalitis zu erkranken, dagegen bei unter eins zu einer Million. Und sogar dieser Zusammenhang gilt als unsicher. Die Impfung mit dem attentuierten Lebendimpfstoff hat also eine viel geringere Komplikationsrate als die Erkrankung selbst.

Die Fragen beantworten die Immunologinnen Professorin Uta Höpken und Dr. Kathrin de la Rosa sowie der RNA-Experte Dr. Emanuel Wyler.

Qualifizierte Angebote zu den Impfungen finden Sie auch hier:

Quelle: PM des MDC vom 25. 01. 2021

Verteilung von OP-Masken an Bedürftige

Wegen der neuen Pflicht zum Tragen medizinischer Masken im Einzelhandel und dem Öffentlichen Personennahverkehr wurden den Bezirksämtern vom Berliner Senat entsprechende Masken zur Ausgabe an Bedürftige geliefert. Die kostenlose Verteilung der OP-Masken an Pankower Bedürftige erfolgt an den Standorten der Bürgerämter und beginnt am Dienstag, dem 26. Januar 2021. Die Bedürftigkeit ist durch geeignete Dokumente oder Bescheide (BerlinPass, BaFög, ALG, Grundsicherung u. ä.) zu belegen. Die Ausgabe erfolgt zu einheitlichen Sprechzeiten: Mo.: 8 – 16, Di., Do.: 10 – 18 Uhr, Mi.: 8 – 14, Fr.: 8 – 13 Uhr. Ausgabestellen sind die Rathäuser Pankow (Breite Str. 24a-26, 13187 Berlin), Weißensee (Berliner Allee 252-260, 13088 Berlin) Prenzlauer Berg (Fröbelstraße 17, 10405 Berlin, Haus 6) sowie das Bürgerhaus Karow/Buch (Franz-Schmidt-Str. 8-10, 13125 Berlin). An den Standorten ist ein Wegeleitsystem eingerichtet. Es gelten die Abstands- und Hygieneregeln, eine Mund-Nasenbedeckung ist zwingend.

Quelle: PM BA Pankow vom 25. 01. 2021

Bibliotheken geschlossen bis 14.02. / kostenloser digitaler Bibliotheksausweis

Bibliotheken des VÖBB vom 23. Januar bis 14. Februar geschlossen – umfangreiche digitale Angebote stehen kostenlos zur Verfügung

Gemeinsam haben die Leitungen aller Berliner Öffentlichen Bibliotheken beschlossen, die Häuser ab Samstag, 23. Januar 2021, zu schließen. Damit reagiert der Verbund der Öffentlichen Bibliotheken Berlins (VÖBB) auf die erneut gestiegene Notwendigkeit der Kontaktvermeidung.
Uns ist bewusst, dass die Bibliotheken einen immens wichtigen Teil der Berliner Infrastruktur darstellen, daher waren die VÖBB-Häuser bis jetzt teilweise mit einem sehr eingeschränkten Angebot geöffnet. Jetzt, im erneut verstärkten Lockdown, setzen wir auf die Stärke unserer digitalen Angebote, die wir in den letzten Jahren gut ausgebaut haben. Ein kostenloser digitaler Bibliotheksausweis wurde gestern aufgelegt, nach Anmeldung ist er drei Monate gültig.
Unter www.voebb.de/digitale-angebote stehen neben 166.000 E-Books und 24.000 Hörbüchern auch 7 Lernprogramme mit 1.850 unterschiedlichen E-Learning-Kursen zur Verfügung. Musik- und Filmstreaming wird ebenfalls angeboten, von Klassik zu Unterhaltungsmusik und von Dokumentationsfilm über Kinderfilme zu Spielfilm finden die Nutzenden eine große Vielfalt.

„Ja, es ist eine schwere Einschränkung für die Berliner*innen, dass nun auch die Öffentlichen Bibliotheken schließen, aber der VÖBB ist digital gut aufgestellt und so weiterhin rund um die Uhr da. Ich tue alles für eine schnelle Wiedereröffnung“, sagt Dr. Klaus Lederer, Senator für Kultur und Europa.

„Mit dem kostenlosen Online-Ausweis und den vielen digitalen Angeboten sind die Bibliotheken weiter berlinweit präsent. Ich danke den Mitarbeiter*innen der Bibliotheken, dass sie bis jetzt durchgehalten haben, nun brauchen wir auch hier ein – hoffentlich kurzes – Innehalten für die Gesundheit aller“ erklärt Bezirksstadträtin Sabine Weißler für den Verbund der Öffentlichen Bibliotheken Berlins (VÖBB).

Quelle: PM Der Senatsverwaltung für Kultur vom 22.01.

Stadtteilbibliothek Buch

Stadtteilbibliothek Karow

Tempohome in Karow schliesst

Tempohome in der Siverstorpstraße in Karow weicht für Schuldrehscheibe

Die Containerunterkunft für Geflüchtete in der Siverstorpstraße 5-19 in Berlin-Karow schließt Ende Januar 2021. Die noch rund 200 Bewohnerinnen und Bewohner, darunter zahlreiche Familien, ziehen in der letzten Januarwoche aus dem Tempohome aus. Notwendig ist die Schließung, da der Standort als temporäre Schuldrehscheibe für geplante Schulsanierungsmaßnahmen in den Ortsteilen Karow und Buch benötigt wird. Das Landesamt für Flüchtlingsangelegenheiten organisiert die Umzüge. Bei der Verteilung der geflüchteten Menschen auf neue Unterkünfte wird darauf geachtet, dass möglichst der Sozialraumbezug von Familien erhalten bleibt. Kindern und Jugendlichen soll es ermöglicht werden, weiterhin in ihren Kitas und Schulen zu bleiben. Ein Großteil der Menschen zieht in die beiden Gemeinschaftseinrichtungen im Lindenberger Weg und in der Wolfgang-Heinz-Straße in Buch sowie in die neu gebaute Gemeinschaftsunterkunft in der Falkenberger Straße 154 in Weißensee.

„Mit der Schließung des Temphomes nach vierjähriger Betriebszeit endet die provisorische Unterbringung von Geflüchteten in Pankow, die in Karow mit der zur Notunterkunft umfunktionierten Sporthalle der Grundschule Am Hohen Feld im November 2015 begann. Ohne das unermüdliche Engagement der vielen Karowerinnen und Karower wären die vielen Schutzsuchenden aus Syrien, Irak, Iran oder auch Eritrea nie so gut bei uns in Pankow angekommen. Für diese nachbarschaftliche Solidarität möchte ich meinen Dank und meine Anerkennung aussprechen! Nach wie vor bleibt viel zu tun, aber ich bin zuversichtlich, dass wir diese Herausforderung gemeinsam weiterhin gut meistern.“, sagt Bezirksbürgermeister Sören Benn (DIE LINKE).

Quelle: PM BA Pankow vom 22. 02. 2021

 

Gläsernes Labor: Forschen in den Winterferien

Im Gläsernen Labor werdet ihr selbst zu Forschern: Normalerweise experimentiert ihr bei uns zusammen mit Wissenschaftlern im Labor. Doch in Corona-Zeiten müssen wir, wie viele andere, neue Wege beschreiten. Wir kommen per Videoschaltung zu euch nach Hause! In den letzten Wochen haben wir unser Online-Experimentierangebot schon stundenweise erprobt. In den Winterferien wollen wir länger für euch da sein, denn ihr habt viel mehr Zeit, mit uns auf Entdeckungsreise in den Naturwissenschaften zu gehen. Und damit bei all dem Forschen die Bewegung nicht zu kurz kommt, wollen wir mit euch auch eine halbe Stunde Sport machen. Lasst euch überraschen, was wir alles für euch vorbereitet haben.

Hinweise zur Online-Buchung

Für die Teilnahme wird ein Internetzugang und ein Laptop oder Tablet mit Kamera und Mikrofon benötigt. Der Experimentierkurs erfolgt über eine Zoom-Konferenz. Für einen pünktlichen Start empfiehlt es sich, einige Minuten früher online zu sein. Es findet keine Aufzeichnung statt.

Ablauf der Forscherferien:
10:00 – 11:00 Uhr Experimentieren
11:00 – 11:30 Uhr Pause
11:30 – 12:00 Uhr Sport am Platz
12:00 – 13:00 Uhr Experimentieren

Hinter der Ortsgrenze: Holland-Park

Voraussichtlich im Frühjahr 2022 öffnet in Schwanebeck der neue Holland-Park. Der HollandPark ist ein Erlebnis- und Erholungsort für Jung und Alt, also für die ganze Familie. So wird, in dem in typisch alt-holländischen Baustil geplanten Holland-Park in Schwanebeck, das derzeitige Gartencenter integriert werden. Ein Erlebnis wird mit Sicherheit der große Bauernmarkt sein.

Holland-Park

Schneller, kontrastreicher, informativer: Neuer Kontrastmechanismus verbessert Xenon-MRT

Die Xenon-Magnetresonanztomographie erlaubt tiefe Einblicke ins Körperinnere und eröffnet neue Möglichkeiten in der Diagnostik und Therapie von Krankheiten. Physiker vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin konnten die Detektionsmethode mit dem Edelgas Xenon nun entscheidend verbessern. An zwei Molekülen getestet und mit einigen neuen technischen Tricks ist es gelungen, aus einer einzigen Daten-Aufnahme in wenigen Sekunden mehr Bildinformationen zu gewinnen, als es bislang möglich war. Zudem wird für den neuen Kontrastmechanismus weniger Kontrastmittel und kein Gadolinium benötigt, dessen mögliche Unverträglichkeit weiterhin diskutiert wird. Die Methode ist ca. 850-mal sensitiver als vergleichbare Kontrastmittel konventioneller MRT mit Wassermolekülen. Die Ergebnisse der Arbeit sind soeben im Fachjournal „Chemical Science“ erschienen.

Eine neue beschleunigte Methode der Xe-MR-Tomographieerlaubt die schnelle und akkurate Quantifizierung des Phasenkohärenz-Verlustes. Hieraus lässt sich die Aktivierungsenergie für die Bindung des Xenons in Wirtsmolekülen wie dem Wirkstoffträger Cucurbit[6]uril bestimmen. Visualisierung: Barth van Rossum

Krankhafte Prozesse im Körper aufspüren, die sich den herkömmlichen bildgebenden Verfahren entziehen – dieses Potenzial verspricht die Xenon-Magnetresonanztomographie. Anders als bei der konventionellen MRT werden hierbei keine Wassermoleküle, sondern das ungiftige Edelgas Xenon detektiert, das aufgrund seiner besonderen Magnetisierung eine extrem hohe Signalstärke im MRT besitzt. Darüber hinaus besitzt die Xenon-Bildgebung auch analytisches Potenzial, da Moleküle, die mit Xenon interagieren, als Wirkstoffträger dienen können und nun mit MRT sowohl lokalisiert als auch charakterisiert werden können.
Physiker vom FMP arbeiten seit Jahren daran, die Xenon-MRT weiter zu perfektionieren, so dass sie zum Beispiel in der Diagnostik und Therapie von Krebserkrankungen eingesetzt werden kann. Nach der Entdeckung mehrerer Moleküle, die das Edelgas Xenon sehr gut binden und so hoch kontrastreiche Bilder aus dem Körperinneren liefern können, ist dem Team um Dr. Leif Schröder nun ein weiterer Erfolg gelungen.
„Wir haben einen weiteren Kontrastmechanismus zugänglich gemacht, der in kürzerer Zeit wesentlich mehr Bildinformationen generiert als die bisherige Methode“, erläutert Leif Schröder. „Dabei ist die sogenannte Relaxivität viel höher, das heißt, wir brauchen wesentlich weniger Kontrastmittel als konventionelle Methoden, um Bildkontrast zu erzeugen, was ja gerade für die medizinische Anwendung von großem Vorteil ist.“

Ein kurzer Kontakt reicht für den T2-Kontrast
Konkret ging es in der jetzt im Fachmagazin „Chemical Science“ publizierten Arbeit um den T2-Kontrast – neben T1 einer der beiden Kontrast-Parameter in der Kernspintomographie – und wie er sich durch die beiden Moleküle cryptophane-A monoacid (CrA-ma) und cucurbit[6]uril (CB6) beeinflussen lässt. Diese Fragestellung wurde zuvor noch nicht untersucht, obwohl die beiden metallfreien Moleküle als hoch potente Kandidaten für die Xenon-MRT gelten.
Wie Leif Schröder und sein Kollege Martin Kunth zeigen konnten, kommt es allein durch den kurzen Kontakt zwischen Xenon und dem Molekül zu einer Signaländerung. Eine einzige Aufnahme (Single-Shot) mit trickreicher, fortlaufender Beobachtung des Signals genügt, um den T2-Kontrast für eine ganze Bildserie darstellen zu können. Zuvor waren mindestens zwei Messungen für ein einzelnes Bild nötig – eine bei angeschaltetem und eine bei ausgeschaltetem Signal und es vergingen jeweils mindestens rund 30 Sekunden, bis ein Bild codiert wurde. Der neue Kontrastmechanismus schafft dies mit einem Single-Shot in ca. 7 Sekunden.
„Das ist ein extremer Zeitvorteil im Vergleich zur alten Methode“, sagt Martin Kunth. Ein weiterer Vorteil des neuen Mechanismus ist, dass keine weiteren Referenzaufnahmen oder umstrittene Metallkomplexe nötig sind, um den T2-Kontrast zu erzeugen. Zudem lassen sich nun aus einem einzigen fortlaufenden Signal über 1.000 Bilder mit fortschreitendem Kontrast rekonstruieren. Bei der herkömmlichen Methode waren es maximal 30 Bilder, die alle einzeln aufgenommen werden mussten, also ein ungleich höherer Aufwand. „Im Grunde ist das eine sehr einfache Messung, wir brauchen nur einen Datensatz, um eine informationsreiche Bilderserie mit einer sehr viel besseren räumlichen Auflösung zu bekommen“, betont der Physiker.

Daten mit hoher Aussagekraft
Die einfache Messung ist an eine komplexe Datenverarbeitung gekoppelt, die ebenfalls neuartig ist. Die von den FMP-Forschern programmierte Software kann mehr als nur relative Signalvergleiche – wo ist es heller, wo dunkler – sondern für bestimmte physikalische Parameter erstmals auch absolute Zahlen errechnen. Die Zahlen beschreiben die exakte Austauschrate zwischen Xenon und den Molekülen und lassen zum Beispiel Rückschlüsse auf die Stabilität eines Moleküls als Wirkstoffträger zu.
„Wirkstofftransporter müssen eine gewisse Stabilität besitzen, damit sie das Medikament nicht zu früh, aber auch nicht zu spät abgeben. Diese Eigenschaft können wir jetzt ebenso messen wie die Aktivierungsenergie, die für die Bindung im Wirkstoffträger benötigt wird“, beschreibt Martin Kunth eine der vielen neuen Anwendungsmöglichkeiten.
„Zusammengefasst können wir mit unserem neuen Verfahren sowohl die klinische Bildgebung verbessern als auch pharmakologische oder chemisch-analytische Fragestellungen beantworten“, ergänzt Leif Schröder. „Damit haben wir die Xenon-MRT einen entscheidenden Schritt vorangebracht, von dem nun alle Forscher und Kliniker, die damit arbeiten, profitieren werden.“

Publikation
Kunth M., Schröder L.; Binding Site Exchange Kinetics revealed through Efficient Spin-Spin Dephasing of Hyperpolarized 129Xe, Chemical Science 2021, 12, 158-169, DOI: 10.1039/D0SC04835F

Text Pressemitteilung: Beatrice Hamberger

PM vom FMP vom 12. 01. 2021

Leibniz-Forschungsinstitut für Molekulare Pharmakologie

Molecular Imaging Group (Leif Schröder)